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Wavelets and the theory of non-parametric
function estimation

By Iain M. Johnstone

Department of Statistics, Sequoia Hall, Stanford University,
Stanford, CA 94305, USA

Non-parametric function estimation aims to estimate or recover or denoise a function
of interest, perhaps a signal, spectrum or image, that is observed in noise and possibly
indirectly after some transformation, as in deconvolution. ‘Non-parametric’ signifies
that no a priori limit is placed on the number of unknown parameters used to model
the signal. Such theories of estimation are necessarily quite different from traditional
statistical models with a small number of parameters specified in advance.
Before wavelets, the theory was dominated by linear estimators, and the exploita-

tion of assumed smoothness in the unknown function to describe optimal methods.
Wavelets provide a set of tools that make it natural to assert, in plausible theoretical
models, that the sparsity of representation is a more basic notion than smooth-
ness, and that nonlinear thresholding can be a powerful competitor to traditional
linear methods. We survey some of this story, showing how sparsity emerges from
an optimality analysis via the game-theoretic notion of a least-favourable distribu-
tion.

Keywords: minimax; Pinsker’s theorem; sparsity; statistical decision problem;
thresholding; unconditional basis

1. Introduction

Within statistics, the first applications of wavelets were to theory. While the potential
for statistical application to a variety of problems was also apparent, and is now
being realized (as surveyed in other articles in this issue), it was in the theory of
non-parametric function estimation that progress was initially fastest. The goal of
this article is to survey some of this work retrospectively.
Why should developments in the theory of statistics interest a wider scientific

community? Primarily, perhaps, because theory attempts to isolate concepts of broad
generality that clarify in what circumstances and under what assumptions particular
data analytic methods can be expected to perform well, or not. As a classical exam-
ple, the most widely used statistical tools—regression, hypothesis tests, confidence
intervals—are typically associated with parametric models, that is, probability mod-
els for observed data that depend on, at most, a (small) finite number of unknown
parameters. The true scope, versatility and applicability of these tools was clarified
by the development of underlying theoretical notions such as likelihood, sufficiency,
unbiasedness, Cramér–Rao bounds, power, and so forth. Many of these concepts have
passed into the general toolkit of scientific data analysis.
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A further key point is that theory promotes portability of methods between scien-
tific domains: thus, Fisher’s analysis of variance was initially developed for agricul-
tural field trials, but he also created theoretical support with such effect that most
uses of analysis of variance now have nothing to do with agriculture.
What is meant by the term non-parametric function estimation? The advent of

larger, and often instrumentally acquired, datasets and a desire for more flexible
models has stimulated the study of non-parametric models, in which there is no a
priori bound on the number of parameters used to describe the observed data. For
example, when fitting a curve to time-varying data, instead of an a priori restriction
to, say, a cubic polynomial, one might allow polynomials of arbitrarily high degree
or, more stably, a linear combination of splines of local support.
Despite prolific theoretical study of such infinite-dimensional models in recent

decades, the conclusions have not dispersed as widely as those for the parametric
theory. While this is partly because non-parametric theory is more recent, it is cer-
tainly also partly due to the greater nuance and complexity of its results, and a
relative paucity of unifying principles.
The arrival of wavelet bases has improved the situation. Wavelets and related

notions have highlighted sparsity of representation as an important principle in esti-
mation and testing. Through the dyadic Gaussian sequence model, they have bridged
parametric and non-parametric statistics and re-invigorated the study of estimation
for multivariate Gaussian distributions of finite (but large) dimension. Wavelets have
also been the vehicle for an influx of ideas—unconditional bases, fast algorithms, new
function spaces—from computational harmonic analysis into statistics, a trend that
seems likely to continue to grow in future.

2. A simple model for sparsity

We begin with an apparently naive discussion of sparsity in a ‘monoresolution’ model.
Suppose that we observe an n-dimensional data vector y consisting of an unknown
signal θ, which we wish to estimate, contaminated by additive Gaussian white noise
of scale σn. If the model is represented in terms of its coefficients in a particular
orthonormal basis B, we obtain (yB

k ), (θ
B
k ), etc., though the dependence on B will

usually be suppressed. Thus, in terms of basis coefficients,

yk = θk + σnzk, k = 1, . . . , n, (2.1)

and {zk} are independently and identically distributed N(0, 1) random variables.
Here, we emphasize that θ = (θk) is, in general, regarded as fixed and unknown.
This model might be reasonable, for example, if we were viewing data as Fourier
coefficients, and looking in a particular frequency band where the signal and noise
spectrum are each about constant.
If, in addition, it is assumed that {θk} are random, being drawn from a Gaussian

distribution with Var(θk) = τ2
n, then the optimal (Wiener) filter, or estimator, would

involve linear shrinkage by a constant linear factor:

θ̂k =
ρ

ρ+ 1
yk, ρ =

τ2
n

σ2
n

. (2.2)

The ratio τ2
n/σ

2
n (or some function of it) is usually called the signal-to-noise ratio.

The two key features of this traditional analysis are
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(a) the Gaussian prior distribution leads to linear estimates as optimal; and

(b) the linear shrinkage is invariant to orthogonal changes of coordinates: thus, the
same Wiener filter is optimal, regardless of the basis chosen.

Sparsity. In contrast, sparsity has everything to do with the choice of bases. Infor-
mally, ‘sparsity’ conveys the idea that most of the signal strength is concentrated
in a few of the coefficients. Thus, a ‘spike’ signal γ(1, 0, . . . , 0) is much sparser than
a ‘comb’ vector γ(n−1/2, . . . , n−1/2), even though both have the same energy, or �2
norm: indeed these could be representations of the same vector in two different bases.
In contrast, noise, almost by definition, is not sparse in any basis, and among repre-
sentations of signals in various bases, it is the ones that are sparse that will be most
easily ‘denoised’.

Remark 2.1. Of course, in general terms, sparsity is a familiar notion in statistics
and beyond: think of parsimonious model choice, ‘Occam’s razor’, and so forth. It is
the motivation for the principal components analysis of Hotelling (1933), suitable for
high-dimensional, approximately Gaussian data. However, in the specific domain of
non-parametric function estimation, prior to the advent of wavelets, the role of spar-
sity was perhaps somewhat obscured by the focus on the related, although somewhat
more special, notion of smoothness.

Figure 1 shows part of a real signal represented in two different bases: figure 1a is
a subset of 27 wavelet coefficients θW, while figure 1b shows a subset of 27 Fourier
coefficients θF. Evidently, θW has a much sparser representation than does θF.
The sparsity of the coefficients in a given basis may be quantified using �p norms,

‖θ‖p =
( n∑

1

|θk|p
)1/p

,

for p < 2, with smaller p giving more stringent measures. Thus, while the �2 norms
of our two representations are roughly equal,

‖θF‖2 = 25.3 ≈ 23.1 = ‖θW‖2,

the �1 norms differ by a factor of 6.5:

‖θF‖1 = 246.5 � 37.9 = ‖θW‖1.

Figure 2 shows that the sets,{
θ :

n∑
1

|θk|p � Cp

}
,

become progressively smaller and more clustered around the coordinate axes as p
decreases. Thus, the only way for a signal in an �p ball to have large energy (i.e.
�2 norm) is for it to consist of a few large components, as opposed to many small
components of roughly equal magnitude. Put another way, among all signals with a
given energy, the sparse ones are precisely those with small �p norm.
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Figure 1. (a) θWk = level 7 of estimated NMR reconstruction g of figure 4, while in (b)
θFk = Fourier coefficients of g at frequencies 65, . . . , 128, both real and imaginary parts
shown. While these do not represent exactly the same projections of f , the two overlap and
‖θF‖2 = 25.3 ≈ 23.1 = ‖θW‖2.

p = 2

p = 1

p small

Figure 2. Contours of �p balls.
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Figure 3. Visualization of model (2.1): open circles are unknown values θk, solid circles are
observed data yk, k = 1, . . . , n = 64. Horizontal lines are thresholds at λn =

√
logn/n.

Thus, we will use sets {‖θ‖p � C} as models for a priori constraints that the
signal θ has a sparse representation in the given basis. Assume, for simplicity here,
that σn = 1/

√
n and that p = C = 1: it is thus supposed that

n∑
1

|θk| � 1.

Other situations can be handled by developing the theory for general (p, Cn, σn) (see
Donoho & Johnstone 1994b). How to exploit this sparsity information in order to
better estimate θ: in other words, can we estimate θW better than θF?
Figure 3 shows an idealized case in which all θk are zero except for two spikes, each

of size 1/2. Two extreme examples of linear estimators are θ̂1(y) ≡ y, which leaves
the data unadjusted, and θ̂0(y) ≡ 0, which sets every coordinate to zero. The first,
a pure ‘variance’ estimator, has MSE = σ2

n = 1/n in each of the n coordinates, for a
total MSE = 1. The second, θ̂0, a pure ‘bias’ estimator, is exactly correct on all but
the two spikes, where it suffers a total MSE = 2 · (1/2)2 = 1/2. Given the symmetry
of the prior knowledge and the statistical independence of the observations, the only
other plausible choices for a linear estimator have the form cy, for a constant c,
0 � c � 1. It can be shown that such estimators are effectively a combination of the
two extremes, and, in particular, do not have noticeably better MSE performance.
In the situation of figure 3, thresholding is natural. Define the hard threshold

estimator by its action on coordinates,

θ̂λ,k(y) =

{
yk, if |yk| � λσn,

0, otherwise,
(2.3)
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and figure 3 shows a threshold of

λn = σn

√
logn =

√
logn/n.

For the particular configuration of true means θk shown there, the data from the two
spikes pass the threshold unchanged, and as such are essentially unbiased estimators.
Meanwhile, in all other coordinates, the threshold correctly sets all data to zero
except for the small fraction of noise that exceeds the threshold. Thus, it can be
directly verified that

MSE(θ̂λ, θ) ≈ 2σ2
n + nσ2

nE{Z2, Z2 > logn} ≈ 2n−1 + 2
√
logn/n,

where Z is a standard Gaussian variate. This mean squared error is of course much
better than for any of the linear estimators.

Statistical games and the minimax theorem. The skeptic will object that the con-
figuration of figure 3 was chosen to highlight the advantages of thresholding, and
indeed it was! It is precisely to avoid such reasoning from constructed cases that the
tools of game theory have been adapted for use in statistics. A sterner and fairer test
of an estimator is obtained by creating a statistical two-person zero-sum game, or
statistical decision problem.

(i) Player I (‘the scientist’) is allowed to choose any estimator θ̂(y), linear, thresh-
old or of more complicated type.

(ii) Player II (‘nature’) may choose θ ∈ R
n at random, and may choose a probability

distribution π for θ subject only to the sparsity constraint that Eπ‖θ‖1 � 1.

(iii) The pay-off is calculated as the expected mean squared error of θ̂(Y ) when θ
is chosen according to π, and then Y satisfies model (2.1): Y = θ + σnz for
z ∼ Nn(0, I). Thus, the pay-off now averages over both θ and Y :

r(θ̂, π) = EπEY |θ‖θ̂(Y )− θ‖2
2.

Of course, the scientist tries to minimize the pay-off and nature tries to maximize it.
Classical work in statistical decision theory (Wald 1950; Le Cam 1986; see also

Johnstone 1998) shows that the minimax theorem of von Neumann can be adapted
to apply here, and that the game has a well-defined value, the minimax risk :

Rn = inf
θ̂
sup

π
r(θ̂, π) = sup

π
inf
θ̂

r(θ̂, π). (2.4)

An estimator attaining the left-hand infimum in (2.4) is called a minimax strat-
egy or estimator for player I, while a prior distribution π attaining the right-hand
supremum is called least favourable and is an optimal strategy for player II. It is the
structure of these optimal strategies, and their effect on the minimax risk Rn, that
is of chief statistical interest.
While these optimal strategies cannot be exactly evaluated for finite n, informa-

tive asymptotic approximations are available (Donoho & Johnstone 1994b), with the
consequence that under our unit norm sparsity constraint,

Rn ∼
√
logn/n,
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as n → ∞. Indeed, an approximately least-favourable distribution is given by drawing
the individual coordinates θk independently from a two-point distribution with

θk =

{
σn

√
logn, with probability εn

.= 1/
√

n logn,

0, otherwise.
(2.5)

This amounts to repeated tossing of a coin highly biased towards zero. Thus, in
n draws, we expect to see a relatively small number, namely

√
n/ logn of non-zero

components. The size of these non-zero values is such that they are hard to distinguish
from the larger values among the more numerous remaining n − √

n/ logn noise
observations. Of course, what makes this distribution difficult for player II is that
the locations of the non-zero components are random as well.
An approximately minimax estimator for this setting is given by the hard thresh-

olding rule described earlier, but with threshold λn slightly larger than
√
logn: for

example, λn =
√
log(n logn) will do. It can also be verified that no linear estimator

can achieve a pay-off of better than 1/2 if nature chooses a suitably uncooperative
probability distribution for θ.
It is perhaps the qualitative features of this solution that most deserve comment.

Had we worked with simply a signal-to-noise constraint—Eπ‖θ‖2
2 � 1, say—we would

have obtained a Gaussian prior distribution as being approximately least favourable,
and the linear Wiener filter (2.2) with σ2

n = τ2
n = 1/n as an approximately minimax

estimator. The imposition of a sparsity constraint takes us far away from Gaussian
priors and linear estimators.

Sparsity and improved MSE. There is an alternative way to show how sparsity
of representation affects the mean squared error of estimation using thresholding.
Return to model (2.1), and observe that the MSE of θ̂1(yi) = yi for estimating θi is
σ2

n, while the MSE of θ̂0(yi) = 0 is θ2
i . Given a choice, an omniscient ‘oracle’ would

choose the estimator that yields the smaller of the two MSEs. Repeating this for
each coordinate leads to a notion of ideal risk :

R(θ, σ) =
∑

i

min(θ2
i , σ

2). (2.6)

Suppose that the coefficients are rearranged in decreasing order:

θ2
1 � θ2

2 � · · · � θ2
n.

The notion of ‘compressibility’ captures the idea that the number of large coefficients,
Nσ(θ) = #{θi : |θi| � σ} is small, and also that there is little energy in the tail sums

c2k =
∑
i>k

θ2
i .

Then, good compressibility is actually equivalent to small ideal risk:

R(θ, σ) = Nσ(θ)σ2 + c2Nσ
(θ).

Ideal risk cannot be attained by any estimator, which, as a function of y alone,
lacks access to the oracle. However, thresholding comes relatively close to mimicking
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ideal risk: for soft thresholding at λn =
√
2 logn, Donoho & Johnstone (1994a), show

for all n, and for all θ ∈ R
n, that

E‖θ̂ST − θ‖2 � (2 logn+ 1)[ε2 +R(θ, ε)].

Thus, sparsity implies good compressibility, which in turn implies the possibility of
good estimation, in the sense of relatively small MSE.

Remark 2.2. The scope of model (2.1) is broader than it may at first appear.
Suppose that the observed data satisfy

Y = Aθ + ε, (2.7)

where Y is an Nn × 1 data vector, A is an Nn × n orthogonal design matrix (AtA =
mIn), and ε has independent Gaussian components. Model (2.1) is recovered by
premultiplying (2.7) by m−1At. Thus, A might be a change of basis, and so our
analysis covers situations where there is some known basis in which the signal is
thought to be sparse. Indeed, this is how sparsity in wavelet bases is employed, with
A being (part of the inverse of) a wavelet transform.

Remark 2.3. The sparsity analysis, motivated by wavelet methods below, consid-
ers a sequence of models of increasing dimensionality; indeed, the index n is precisely
the number of variables. This is in sharp contrast with traditional parametric statis-
tical theory, in which the number of unknown parameters is held fixed as the sample
size increases. In practice, however, larger quantities of data Nn typically permit
or even require the estimation of richer models with more parameters. Model (2.7)
allows Nn to grow with n. Thus, wavelet considerations promote a style of asymp-
totics whose importance has long been recognized (Huber 1981, § 7.4).

Remark 2.4. A common criticism of the use of minimax analyses in statistics
holds that it is unreasonable to cast ‘nature’ as a malicious opponent, and that
to do so risks throwing up as ‘worst cases’ parameters or prior configurations that
are irrelevant to normal use. This challenge would be most pertinent if one were to
propose an estimator on the basis of a single decision problem. Our perspective is
different: we analyse families of statistical games, hoping to discover the common
structure of optimal strategies; both estimators and least-favourable distributions. If
an estimator class, such as thresholding, emerges from many such analyses, then it
has a certain robustness of validity that a single minimax analysis lacks.

3. The ‘signal in Gaussian white-noise’ model

The multivariate Gaussian distribution Np(θ, σ2I) with mean θ and p independent
coordinates of standard deviation σ is the central model of parametric statistical
inference, arising as the large sample limit of other p-parameter models, as well as
in its own right.
In non-parametric statistics, the ‘signal in Gaussian white-noise’ model plays a

similar role. The observation process {Y (s), 0 � s � 1} is assumed to satisfy

Y (t) =
∫ t

0
f(s) ds+ σW (t), (3.1)
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where f is a square integrable function on [0, 1] and W is a standard Brownian, or
Wiener, process starting at W (0) = 0. In infinitesimal form, this becomes

dY (t) = f(t) dt+ σ dW (t),

suggesting that the observations are built up from data on f(t) corrupted by inde-
pendent white-noise increments dW (t). The unknown parameter is now f , and it
is desired to estimate or test f or various functionals of f , such as point values or
integrals, on the basis of Y .
As leaders of the Soviet school of non-parametric function estimation, Ibragi-

mov & Khas’minskii (1981) gave a central place to model (3.1), arguing that its
challenges are all conceptual and not merely technical. As in the finite-dimensional
case, (3.1) arises as an appropriate large-sample or low-noise limit of certain other
non-parametric models, such as probability density estimation, regression and spec-
trum estimation (see, for example, Brown & Low 1996; Nussbaum 1996). It extends
to images or other objects if one replaces t ∈ [0, 1] by a multi-parameter index
t ∈ D ⊂ R

d, and W by a Brownian sheet.
Model (3.1) has an equivalent form in the sequence space of coefficients in an

orthonormal basis {ψI , I ∈ I} for L2([0, 1]), the square integrable functions on the
unit interval. Thus, let

yI =
∫

ψI dY,

and, similarly,

θI =
∫

ψIf and zI =
∫

ψI dW,

the latter being a Wiener–Ito stochastic integral. Then, (3.1) becomes

yI = θI + σzI , I ∈ I, (3.2)

where θ = (θI) ∈ �2, and, by the elementary properties of stochastic integrals, zI are
independent and identically distributed (i.i.d.) standard Gaussian variates.
While (3.2) looks like a straightforward infinite-dimensional extension of the

Euclidean Np(θ, σ2I) model, there are significant difficulties. For example, the
sequence (yI) is, with probability one, not square summable, because the noise (zI)
is i.i.d. Similarly, there is no probability distribution supported on square summable
sequences that is invariant under all orthogonal transformations, or even simply
under permutation of the coordinates. If the index set I is linearly ordered, as for
the Fourier basis, one must typically work with sequences of weights, often polyno-
mially decreasing, which lack simplifying invariance properties.
The multi-resolution character of wavelet bases is helpful here. If {ψI} is now an

orthonormal wavelet basis for L2[0, 1], such as those of Cohen et al . (1993), then the
index I = (j, k) becomes bivariate, corresponding to level j and location k2−j within
each level. The index set I becomes⋃

j�0

Ij

⋃
I−1,

with |Ij | = 2j counting the possible values of k, and I−1 an exceptional set for the
scaling function φ0.
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Collect the data coefficients yjk in (3.2) observed at level j into a vector yj that
has a finite-dimensional N2j (θj , σ

2I) distribution. For many theoretical and practical
purposes, it is effective to work with each of these level-wise distributions separately.
Since they are of finite (but growing!) dimension, it is possible, and often a scientif-
ically reasonable simplification, to give θj an orthogonally or permutation-invariant
probability distribution. Indeed, the sparsity results of § 2, derived for Gaussian dis-
tributions of large finite dimension, had precisely this permutation invariance char-
acter, and can be applied to each level in the dyadic sequence model.
The full non-parametric estimation conclusions are obtained by combining results

across resolution levels. However, it often turns out, especially for minimax anal-
yses, that for a given noise level σ, the ‘least-favourable’ behaviour occurs at a
single resolution level j = j(σ), so that conclusions from the j(σ)th permutation-
invariant Gaussian model provide the key to the non-parametric situation. As the
noise level σ decreases, the critical level j(σ) increases, but in a controllable fashion.
Thus, wavelet-inspired dyadic sequence models allow comparatively simple finite-
dimensional Gaussian calculations to reveal the essence of non-parametric estimation
theory.
In this sense, wavelet bases have rehabilitated the finite-dimensional multivariate

Gaussian distribution as a tool for non-parametric theory, establishing in the process
a bridge between parametric and non-parametric models.

4. Optimality in the white-noise model

Our discussion of optimality in the white-noise model illustrates the truism that the
available tools, conceptual and mathematical, influence the theory that can be cre-
ated at a given time. Prior to the advent of wavelet bases, formulations emphasizing
good properties of linear estimators were the norm; subsequently, theoretical con-
clusions became possible that were more in accord with recent practical experience
with algorithms and data.
As a framework for comparing estimators, we continue to use statistical games

and the minimax principle. In the sequence model (3.2), a strategy for player I,
the scientist, is a sequence of estimator coefficients θ̂(y) = (θ̂I), which in terms of
functions becomes

f̂(t) =
∑

I

θ̂IψI(t).

A strategy for player II, nature, is a prior distribution π on θ, subject to a constraint
that π ∈ P. In function terms, this corresponds to choosing a random process model
for {f(t), 0 � t � 1}. The pay-off function from the scientist to nature is

r(θ̂, π) = Eπ‖θ̂(Y )− θ‖2 = Eπ

∫
(f̂ − f)2.

The constraint set P = P(Θ) usually requires, in some average sense usually defined
by moments, that π concentrates on the set Θ = Θ(F).
It is necessary to take F to be a compact subset of L2[0, 1], because otherwise the

minimax risk does not even decrease to zero in the low-noise limit (ε → 0): in other
words, even consistency cannot be guaranteed without restricting F . The restric-
tions usually imposed have been on smoothness, requiring that f have α derivatives
with bounded size in some norm. In the 1970s and 1980s, the norms chosen were
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typically either Hölder, requiring uniform smoothness, or Hilbert–Sobolev, requiring
smoothness in a mean square sense.

(a) Linear estimators

To describe the historical background, we start with linear methods. Estimators
that are linear functions of observed data arise in a number of guises in application:
they are natural because they are simple to compute and study, and already offer
considerable flexibility. In the single time parameter model (3.1)–(3.2), time-shift
invariance is also natural, in the absence of specific prior information to the contrary.
Thus, in what follows, we switch freely between time domain f̂ and Fourier-coefficient
domain θ̂ = (θ̂k). It then turns out that all shift-invariant estimators have similar
structure as follows.

(i) Weighted Fourier series. Using the Fourier series form (3.2) for the data
model,

θ̂k = κ̂(hk)yk, (4.1)

where the shrinkage function κ̂ is decreasing, corresponding to a downweighting
of signals at higher frequencies. The ‘bandwidth’ parameter h controls the actual
location of the ‘cut-off’ frequency band.

(ii) Kernel estimators. In the time domain, the estimator involves convolution
with a window function K, scaled to have ‘window width’ h:

f̂(t) =
∫

1
h
K

(
t − s

h

)
dY (s). (4.2)

The representation (4.1) follows after taking Fourier coefficients.

(iii) Smoothing splines. The estimator θ̂ minimizes∑
(yk − θk)2 + λ2r

∑
k2rθ2

k,

where the roughness penalty term takes the mean square form,

c

∫ 1

0
(Drf)2,

in the time domain for some positive integer r. In this case, calculus shows that
θ̂k again has the form (4.1) with

κ̂(λk) = [1 + (λk)2r]−1.

Each of these forms was studied by numerous authors, either in the white-noise
model, or in asymptotically similar models—regression, density estimation—usually
over Hölder or Hilbert–Sobolev F . A crowning result of Pinsker (1980) showed that
linear estimators of the form (4.1) were asymptotically minimax among all estimators
over ellipsoidal function classes. More specifically, suppose that F may be represented
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in the sequence space model (3.2) in terms of an ellipsoid with semiaxes determined
by a sequence {ak}: thus,

F =
{
θ :

∑
k

a2
kθ

2
k � C2

}
.

For example, if F corresponds to functions with r mean squared derivatives,∫
(Drf)2 � L2,

then
a2k−1 = a2k = (2k)r and C2 = L2/π2r.

We denote the resulting space Fr,C , and concentrate on these special cases below.
Pinsker (1980) constructed a family of linear shrinkage estimators f̂ε ↔ θ̂ε of the
form (4.1) with κ̂ = κ̂ε depending also on (r, C), so that the worse case MSE of
θ̂ε(r, C) over Fr,C was the best possible in the small-noise limit:

sup
f∈Fr,C

r(f, f̂ε) ∼ rε(Fr,C), ε → 0.

Furthermore, Pinsker (1980) showed that an asymptotically least-favourable se-
quence of prior distributions could be described by assigning each θk an independent
Gaussian distribution with mean zero and appropriate scale σ2

k(ε, r, C).
This result would seem to give definitive justification for the use of linear methods:

the least-favourable distributions for ellipsoids are approximately Gaussian, and for
Gaussian processes, the optimal (Bayes) estimators are linear.
At about this time, however, some cracks began to appear in this pleasant lin-

ear/Gaussian picture. In the theoretical domain, Nemirovskii (1985) and Nemirovskii
et al . (1985) showed, for certain function classes F in which smoothness was mea-
sured in a mean absolute error (L1) sense, that linear estimators were no longer
minimax, and indeed had suboptimal rates of convergence of error to zero as ε → 0.
Meanwhile, methodological and applied statistical research harnessed computing

power to develop smoothing algorithms that used different, and data-determined,
window widths at differing time points. This is in clear contrast with the fixed-
width h implied by the kernel representation (4.2). For example, Cleveland (1979)
investigates local smoothing, and Friedman & Stuetzle (1981), in describing the
univariate smoother they constructed for projection pursuit regression, say, explicitly,

the actual bandwidth used for local averaging at a particular value of [the
predictor] can be larger or smaller than the average bandwidth. Larger
bandwidths are used in regions of high local variability of the response.

This amounts to an implicit rejection of the ellipsoid model. The algorithms of Fried-
man & Stuetzle and others were iterative, involving multiple passes over the data,
and were, thus, beyond theoretical analysis.

(b) Wavelet bases and thresholding

The appearance of wavelet bases enabled a reconciliation of the Gaussian-linear
theory with these divergent trends. Informally, this might be explained by ‘Mallat’s
heuristic’, quoted by Donoho (1993):
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Figure 4. (a) Sample NMR spectrum provided by A. Maudsley and C. Raphael; n = 1024.
(b) Empirical wavelet coefficients wjk displayed by nominal location and scale j, computed
using a discrete orthogonal wavelet transform: Daubechies near-symmetric filter of order
N = 6 (Daubechies 1992, ch. 6). (c) Reconstruction using inverse discrete wavelet trans-
form of coefficients in (d). (d) Wavelet coefficients after hard thresholding at σ̂

√
2 logn.

σ̂ = med.abs.dev.(w9k)/0.6745, a resistant estimate of scale at level 9 (for details, see Donoho
et al . 1995). (e), (f) Adaptive (quasi-) linear shrinkage of wavelets coefficients in (b) using the
James–Stein estimator on the ensemble of coefficients at each level (cf. Donoho & Johnstone
1995), and reconstruction by the discrete wavelet transform.

Bases of smooth wavelets are the best bases for representing objects com-
posed of singularities, when there may be an arbitrary number of singu-
larities, which may be located in all possible spatial positions.

This captures the notion that a function with spatially varying smoothness (tran-
sients at some points, very smooth elsewhere) might be sparsely represented in a
smooth wavelet basis and hence well estimated.
Indeed, figure 4c illustrates the improvement yielded by wavelet thresholding on a

noisy NMR signal in comparison with figure 4e, which shows an arguably best near-
linear estimator in the spirit of Pinsker’s theorem (for further details, see Donoho &
Johnstone (1995) and Johnstone (1998)). Clearly, the Pinsker-type estimator fails to
adjust the (implied) window width in (4.2) to both capture the sharp peaks and to
average out noise elsewhere.
We turn now to describe some of the theory that underlies these reconstructions

and Mallat’s heuristic. More technically, wavelets form an unconditional basis simul-
taneously for a vast menagerie of function spaces, allowing more flexible measures of
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smoothness than the Hölder and Hilbert–Sobolev spaces hitherto used in statistics.
An unconditional basis for a Banach space B with norm ‖·‖ is defined by a countable
family {ψI} ⊂ B with two key properties as follows.

(i) Any element f ∈ B has a unique representation:

f =
∞∑
1

θIψI ,

in terms of coefficients θI ∈ C.

(ii) Shrinkage: there is an absolute constant C such that if |θ′
I | � |θI | for all I,

then ∥∥∥∥∑
θ′

IψI

∥∥∥∥ � C

∥∥∥∥∑
θIψI

∥∥∥∥.
The statistical significance of these two properties is firstly that functions f ∈ B may
be described in terms of coefficient sequences {θI}, and secondly that the basic sta-
tistical operation of shrinkage on these sequences, whether linear or via thresholding,
is stable in B, in that the norms cannot be badly inflated. Notably, this property is
not shared by the Fourier basis (Kahane et al . 1977).†
Figure 5 represents the class of Besov spaces schematically in terms of the smooth-

ness index α (equal to the number of derivatives) and the homogeneity index p,
plotted as 1/p as is customary in harmonic analysis. Each point (α, 1/p) corresponds
to a class of Besov spaces. The vertical line p = 2 represents the Hilbert–Sobolev
smoothness spaces traditionally used in statistics, while points to the right are spaces
with p < 2, hence having some degree of sparsity of representation in the wavelet
domain.
To be more concrete, we consider a single example from the family of Besov spaces,

the bump algebra (Meyer 1990, § 6.6).‡ Let
gµ,σ(t) = exp{−(x − µ)2/2σ2}

denote a normalized Gaussian bump with location µ and scale σ. The bump algebra
on R is the collection of all functions f representable as a convergent superposition
of signed, scaled and located bumps:

f =
∞∑
1

αigµi,σi ,
∞∑
1

|αi| < ∞.

This might seem a plausible model for (say) signed spectra with peaks of varying
location, width and height (compare with figure 5b). As Meyer notes, while the sim-
plicity of this description is perhaps deceptive due to lack of uniqueness in the rep-
resentation, an equivalent and stable description can be given via a smooth wavelet
orthobasis {ψI}. When restricted to L2[0, 1], we may use the index system I = ∪jIj

of § 3. A subset BC with norm at most C is defined by those

f =
∑

θIψI

† See Donoho (1993) for a formalization of Mallat’s heuristic using the unconditional basis property.
‡ For a discussion in terms of the space of bounded total variation, see Mallat (1998).
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Figure 5. (a) Schematic diagram of Besov spaces of varying homogeneity p and smoothness.
Spaces above the diagonal line α = 1/p consist of functions that are at least continuous. The
point at (1, 1) corresponds to the bump algebra. (b) Caricature evoking a function in the bump
algebra: a superposition of Gaussians at widely different spatial scales.

for which ∑
j�0

2j/2
∑
k∈Ij

|θjk| � C. (4.3)

The condition (4.3) is a scale-weighted combination of the �1 norms of the coefficients
at each level j. The full bump algebra is simply the union of all BC . This wavelet
representation is the key to statistical results.
Now consider a statistical game in the wavelet domain, with the prior constraint

family P consisting of those priors π such that the π expectation of the left-hand
side of (4.3) is bounded by C. In view of the analysis in § 2, it is perhaps now not
surprising that no linear estimator can achieve optimal rates of convergence. In fact,
the minimax risk Rε(BC) decreases like C2/3ε4/3, whereas the best rate possible for
linear estimators is much slower, namely O(ε).
The sequence space structure provided by the unconditional basis property also

implies that optimal estimators in the statistical game are diagonal : θ̂I(y) = δI(yI)
depends on yI alone. While these optimal estimators cannot be described explicitly,
this separation of variables is an important simplification. For example, the least-
favourable distributions are, at least asymptotically, obtained by making the wavelet
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Figure 6. (a) A segment of a sample path on [0, 1] from a prior distribution on wavelet coef-
ficients that is approximately least favourable for a bump algebra ball of form (4.3). (b) The
corresponding wavelet coefficients—those at level j—are i.i.d. draws from a three-point distri-
bution (1− εj)δ0 + εj(δµj + δ−µj ), as described in the text. The wavelets ψjk are derived from
the N = 8 instance of the Daubechies (1992, ch. 6) ‘closest to linear phase’ filter. (c) Sample
path from the Gaussian process that is the least-favourable distribution for an ellipsoid Fm,C

with m = 1 square integrable derivatives. (d) Corresponding wavelet coefficients with variance
σ2

j decreasing with j.

coefficients independent and, indeed, identically distributed within each level. Fur-
thermore, it turns out that thresholding estimators, as described in § 2 but now with
thresholds depending on level, have MSE always within a constant multiple (less
than or equal to 2.2) of the optimal value.
Thresholding in a wavelet basis automatically has the spatial adaptivity that pre-

vious algorithmic work sought: the effective window width at a given time point is
proportional to 2−j(t0), where j(t0) is the finest level wavelet coefficient that survives
thresholding among those wavelets whose support contains t0.
Sample paths from approximately least-favourable distributions for BC are infor-

mative. A sample realization of f can be plotted by substituting a sample draw of
coefficients, θjk, into

f =
∑

θjkψjk.

By considering only threshold rules, which are nearly minimax as just mentioned,
it can be shown that a near-least-favourable distribution can be constructed from
three point distributions, (1 − εj)δ0 + εj(δµj + δ−µj ), that are quite similar to that
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given at (2.5). Now, however, the location µj and size εj/2 of the non-zero atom and
its reflection depend on the level j, but, within level, the 2j draws are independent,
as they are in (2.5). A numerical optimization (Johnstone 1994) allows evaluation of
µj and εj for a given ε and BC . Figure 6a shows a representative sample path and
figure 6b shows the corresponding individual wavelet coefficients for this distribution.
Figure 6c shows a corresponding sample path drawn from the Gaussian least-

favourable distribution on wavelet coefficients, figure 6d corresponding to the ellip-
soid Fm,C with m = 1 derivatives assumed to be square integrable. Again, the
wavelet coefficients are i.i.d. within level, but are now drawn from a Gaussian dis-
tribution with variance σ2

j (m,C, ε) determined by Pinsker’s solution. The two plots
are calibrated to the same indices of smoothness α = 1, scale C = 1 and noise level
ε = 1/64.
The qualitative differences between these plots are striking: the Gaussian sample

path has a spatially homogeneous irregularity, with the sample wavelet coefficients
being ‘dense’, though decreasing in magnitude with increasing scale or ‘frequency
octave’. In contrast, the bump algebra sample path has a greater spikiness: the sam-
ple wavelet coefficients have increasing sparsity and magnitude with each increasing
scale. These differences become even more pronounced if one increases the smooth-
ness α and decreases the homogeneity index p; see, for example, the plots for α = 2,
p = 1/2 in Johnstone (1994).
To summarize: with only the sparsity in mean constraint, and no other restriction

on estimators or prior distributions, coordinatewise thresholding and sparse priors
emerge as the near optimal strategies for the bump algebra statistical game. Thresh-
olding has better MSE, indeed faster rates of convergence, than any linear estimate
over B. This may also be seen visually in the relatively much more noise-free recon-
struction using wavelet thresholding, shown in figure 4.
We mention briefly the problem of adaptation. The near optimality of thresholding

and sparse priors holds in similar fashion for a large class of Besov space constraints
described by (α, 1/p) and size parameter C. The optimal threshold estimator in each
case will depend on (α, p, C): can one give an estimator with optimal or near-optimal
properties without needing to specify (α, p, C)? One very simple possibility, already
shown in figure 4 and explored at length in Donoho et al . (1995), is to use hard
or soft thresholding at threshold

√
2 logn, where n is the number of observations,

or wavelet coefficients. This estimator has a remarkably robust near adaptivity—it
nearly achieves, up to logarithmic terms, the minimax rate of convergence simulta-
neously over a wide range of both functional classes and error measures—not solely
mean squared error.

5. Concluding remarks

Wavelets have enabled the development of theoretical support in statistics for the
important notions of sparsity and thresholding.
In contrast, much work in modern curve fitting and regression treats the imposition

of smoothness as a guiding principle. Wavelets prompt us to think of smoothness as
a particular case of a more general principle, namely sparsity of representation. It is
in fact sparsity of representation that determines when good estimation is possible.
Pursuing the sparsity idea for functions of more than one variable leads to systems

other than literal wavelets, as discussed by Candès & Donoho (this issue).
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We may expect to see more use of ‘dyadic thinking’ in areas of statistics and
data analysis that have little to do with wavelets directly. This is likely both in
the development of methods, and also as a metaphor in making simpler models for
theoretical analysis of other more complex procedures.

Many thanks to Marc Raimondo for his help in the preparation of figure 6. The author gratefully
acknowledges financial support from the National Science Foundation (DMS 9505151).

References

Brown, L. D. & Low, M. G. 1996 Asymptotic equivalence of nonparametric regression and white
noise. Ann. Statistics 3, 2384–2398.

Cleveland, W. S. 1979 Robust locally weighted regression and smoothing scatterplots. J. Am.
Statist. Assoc. 74, 829–836.

Cohen, A., Daubechies, I. & Vial, P. 1993 Wavelets and fast wavelet transform on an interval.
Appl. Comp. Harmonic Analysis 1, 54–81.

Daubechies, I. 1992 Ten lectures on wavelets. CBMS-NSF Series in Applied Mathematics, no. 61.
Philadelphia, PA: SIAM.

Donoho, D. 1993 Unconditional bases are optimal bases for data compression and statistical
estimation. Appl. Comp. Harmonic Analysis 1, 100–115.

Donoho, D. L. & Johnstone, I. M. 1994a Ideal spatial adaptation via wavelet shrinkage.
Biometrika 81, 425–455.

Donoho, D. L. & Johnstone, I. M. 1994b Minimax risk over �p-balls for �q-error. Probability
Theory Related Fields 99, 277–303.

Donoho, D. L. & Johnstone, I. M. 1995 Adapting to unknown smoothness via wavelet shrinkage.
J. Am. Statist. Assoc. 90, 1200–1224.

Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. & Picard, D. 1995 Wavelet shrinkage:
asymptopia? (With discussion.) J. R. Statist. Soc. B57, 301–369.

Friedman, J. & Stuetzle, W. 1981 Projection pursuit regression. J. Am. Statist. Assoc. 76,
817–823.

Hotelling, H. 1933 Analysis of a complex of statistical variables into principal components. J.
Educ. Psych. 24, 417–441, 498–520.

Huber, P. J. 1981 Robust statistics. Wiley.
Ibragimov, I. & Khas’minskii, R. 1981 Statistical estimation: asymptotic theory. Springer.
Johnstone, I. M. 1994 Minimax Bayes, asymptotic minimax and sparse wavelet priors. In Sta-
tistical decision theory and related topics (ed. S. Gupta & J. Berger), vol. V, pp. 303–326.
Springer.

Johnstone, I. M. 1998 Function estimation: white noise, sparsity and wavelets. Lecture notes.
Kahane, J., de Leeuw, K. & Katznelson, Y. 1977 Sur les coefficients de fourier des fonctions
continues. Comptes Rendus Acad. Sci. Paris A285, 1001–1003.

Le Cam, L. 1986 Asymptotic methods in statistical decision theory. Springer.
Mallat, S. 1998 Applied mathematics meets signal processing. In Proc. of ICM, 18–27 August
1998, Berlin. (Doc. Math. Extra Volume I, 319–338.)
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